The Washington Post editorializes:
FORMER VIRGINIA governor Mark R. Warner (D), now a U.S. senator, took a bold step in 2002 when he became the nation’s first governor to apologize formally for the state’s unspeakably cruel, half-century-long program of forced sterilizations — surgical procedures that deprived as many as 8,000 people of the ability to conceive children. Unfortunately, Virginia, which sterilized more of its citizens than any state but California, then dropped the ball, failing to follow up by making significant reparations or even trying to locate and alert surviving victims.
The victims in Virginia, as with nearly 60,000 others in 31 other states, were men, women, black and white, all deemed by the state as genetically deficient in some way — mentally ill, epileptic or “feebleminded,” in the parlance of the 1920s and ’30s, when the program was at full throttle. In many cases, the men and boys who underwent castrations or vasectomies, and the women and girls whose fallopian tubes or ovaries were removed, were not aware of what had been done to them, let alone the consequences of procedures carried out without their consent — all in the pseudo-scientific cause of enhancing the nation’s genetic stock.
Notice how the Post doesn’t bother making a case against eugenics. It just hurls slurs.
America practiced eugenics much more than Nazi Germany.
Comments at WP:
* The U.S.Supreme Court approved of this practice with the opinion written by the liberal justice Oliver Wendell Holmes.
* Why is it that aborting babies who test positive for Down Syndrome is never referred to as eugenics (which is precisely what it is), but is defended with nice-sounding words like “choice”, “self-determination” and “reproductive freedom”?
If the editorial board of this paper wants to pretend to be against eugenics and strike a pose, fine–but it’s utter hypocrisy.
* Another dredged up outrage to fume about–as Shelley once wrote, “I faint, I fail.”
* Eugenics was a Progressive initiative. The seminal case, Buck v. Bell (1927), was hailed by Progressives as a great victory.
The decision was 8-1, and the lone dissenter was Pierce Butler, then the only Catholic on the Court. Holmes even criticized Butler for letting his religion influence his decision not to join Holmes’s majority opinion.
* Now IVF clinics practice eugenics every day. And their customers love it.
From American Renaissance in 2015:
Eugenics has a bad name. Over the past 70 years, its opponents have linked it to racism and even genocide, and some Christians call it a blasphemous attempt to improve on God’s creation. In its heyday in the 1920s, however, eugenics was developed by leading biologists, including the founders of modern genetics. Their work was promoted and often put into policy by eminent statesmen and intellectuals. Eugenics was supported by a broad coalition, including progressives and socialists. On the Right, the Nazis supported it as well, but it is an absurd caricature to call it “Nazi science.”
The basic principles of heredity on which eugenics was based have not changed. It is our approach to science–and our rejection of it–that have supposedly discredited eugenics. In fact, dramatic advances in genetic engineering are constantly opening up new possibilities for modern eugenics.
People are eugenicists by instinct: They want to mate with healthy partners who show signs of intelligence and other desirable traits. Legal prohibitions against incest, meant to reduce the chance of inbreeding, go back at least as far as the Code of Hammurabi–c. 1750 BC–and the Old Testament. Plato and Aristotle promoted eugenic measures, and every society that domesticated livestock discovered the importance of selective breeding.
Even in today’s harshly anti-scientific atmosphere, parents frequently practice eugenics even though they never use the word. People with certain conditions seek genetic counseling in the hope of avoiding passing on genetic diseases to their children. Amniocentesis, or genetic sampling of the fetus, is a common procedure that has the same goal. When infertile couples go to sperm banks or seek eggs, they look for positive qualities in donors.
Not even the most militant political correctness has been able to root out popular understanding of certain basic truths: Parents pass on their traits to their children, and it is foolish to pretend they don’t.
The science of eugenics
It was Francis Galton who coined the Greek-derived term “eugenics,” meaning well born or good breeding. In Hereditary Genius (1869), he argued that mental abilities, just like physical features, are heritable. Through an analysis of the pedigrees of eminent families in England, he concluded that talent does not occur randomly, but instead runs in the families. Therefore, it would be possible, through arranged marriages, to breed people with desirable traits such as good health, intelligence, and noble character. A society of such individuals would far surpass the average abilities of the original population.
Until the Industrial Revolution, healthy and eugenic fertility was the rule in Europe, with the most capable people having the most children. In England in the 1620s, for example, the middle classes had 4.4 children per woman compared to 2.1 for the working class. There were no antibiotics or advanced lifesaving medicine, so less healthy people often died before they could reproduce.
Mass production of rubber condoms by Goodyear in 1860 started the era of affordable and efficient birth control. Middle and upper classes quickly adopted this novelty, while lower classes did not, thus ending the age-old correlation between high social class and larger families.
The First World War was a horrific slaughter of some of Europe’s best men. Indeed, IQ testing was introduced in the army in part to decrease the chances of using men of ability as cannon fodder. After the Second World War, eugenics became widely associated with Nazi atrocities, and by the 1960s and ’70s it was almost universally rejected.
However, it is dangerous to reject eugenics. Without it we have dysgenics, or the spread of less desirable traits, and the ability to maintain civilization declines. Here are some of the most sobering trends.
It is generally accepted that for a population to maintain its numbers, every woman must have an average of 2.2 children. The industrialized nations of Asia and Europe, which have the highest-IQ populations, have the lowest birth rates and are not reproducing themselves: 1.4 births per woman in Japan, 1.25 in South Korea, 1.6 in Russia and Canada, 1.44 in Germany and Italy, etc. The highest birth rates are in the most impoverished countries of Africa: Niger–6.76, Mali, Burundi, and Somalia–6, Burkina Faso–5.86, Angola–5.37, Ethiopia–5.15, Zambia–5.72, Uganda–5.98, etc.
At the same time, in industrialized countries modern medicine have greatly relaxed the environmental pressure that winnows out defects, which increases the frequency of heritable diseases. Also, parents are having children at increasingly later ages, which raises the number of spontaneous mutations–especially in sperm but also in eggs–which are then introduced into a child’s genome. Chemicals used in consumer products, radiation, and radio-wave-emitting devices could also contribute to higher mutation rates.
Contraception continues its dysgenic effect, not only because high-IQ groups have fewer children but because they have children at later ages, thus further decreasing their relative contribution to the gene pool. Because IQ is estimated to be 80 percent heritable, this skew lowers the average IQ in each successive generation. Welfare also encourages lower-IQ groups to have more children.
Finally, emigration from poor to rich countries probably lowers the average intelligence of both the sending and receiving countries. African emigrants, for example, are often of above-average ability in their home countries, but still bring down the average in Europe or America.
The combination of all these factors is highly damaging.
Genetic load
One of the key concepts in evolution is genetic load. This is the number of damaging and even potentially lethal alleles (gene variants) in the gene pool. Spontaneous–or de novo–mutations contribute to genetic load. In order to keep the load stable, the rate of such mutations must not exceed the rate at which they are eliminated–which happens when the person carrying them fails to reproduce. De novo mutations are not alleles passed on in the usual manner from parent to child; they are simply genetic copying errors.
Every child usually gets 60 to 80 de novo mutations. The majority are neutral; only two or three can potentially disrupt gene functions. Most of the deleterious variants are recessive, which means that they cause damage only in unusual cases, in which a child inherits the same mutation from both parents. Still, a de novo mutation at the wrong spot can be devastating.
Favorable mutations are exceedingly rare. The human genome has evolved through chance mutation for millions of years; at this point, a copying error is much more likely to upset a carefully evolved structure rather than improve it. These errors come in various types with specialized names–copy number variations, chromosomal deletions, microsatellite expansion or contraction, aberrant methylation, etc.–and their cumulative effect compromises fitness.
The number of de novo mutations a child gets depends largely on the father’s age; each additional year of father’s age contributes an average of two to three more such mutations. Although older mothers are known to contribute chromosomal abnormalities, such as trisomy 21 (Down syndrome), 80 percent of de novo mutations come from the father. These mutations are passed down to succeeding generations. There will be a significant accumulation of genetic load as more and more generations live under conditions of relaxed genetic pressure in which a high percentage of the population succeeds in reproducing.
Medicine is one of the greatest contributors to genetic load, because it blocks purifying selection. The left-hand graph shows how much modern medicine and public health has reduced death rates (in Australia), especially in the first few years of life. Although it may seem harsh to say so, early deaths kept genetic load in balance by removing deleterious alleles from the gene pool. According to one study, if approximately 16 percent of each generation fails to reproduce, that removes enough de novo mutations to maintain balance.
However, now that so many more people are surviving to child-bearing age, many unfavorable conditions are increasing. Gene pool deterioration is most obvious in heritable conditions that were once fatal but now are not. For example, before the development of insulin treatment, babies born with Type I diabetes died before reaching maturity, whereas now they can survive and have children. In many countries, Type I diabetes is increasing at roughly 5 percent a year, and in Finland, it increased 338 percent over a 32-year period in children ages one to four. These rates are clearly far more rapid than genetic change in the population, so such increases appear to be the result of a combination of increased genetic load and little-understood environmental factors.
In the distant past, deafness could have been a lethal condition if it meant an inability to hear an approaching predator. More recently, it made it difficult to find a spouse. Now, advanced countries have special schools for deaf people where they meet and marry other deaf people. This further propagates undesirable alleles.
Asthma and allergies do not usually kill people, but before the development of modern treatments, they undoubtedly reduced reproductive success. Now, they need not interfere with reproduction, and their incidence is rising. Asthma has at least tripled over the past 25 years, and now affects more than 22 million Americans. Allergies are also increasing, with such things as peanut allergies–virtually unheard of 50 years ago–appearing in day care centers and schools. Both asthma and allergies are heritable.
A rigorous investigation by the Mayo Clinic found that the incidence of celiac disease (CD) has increased 450 percent in the United States since 1950. CD is highly heritable, and now affects one in 133 Americans (0.75 percent). Its incidence continues to grow, and people with the condition must avoid food with gluten. The Mayo Clinic found that if they were unaware of their condition they were four times more likely than those without it to die over a 45-year period.
Twin studies have shown that autism is highly heritable, and its frequency in the United States has increased 600 percent since mid-’70s. Half of this growth is attributed to better diagnosis and awareness of the condition; the other half remains a mystery. People have proposed various environmental causes but there is strong evidence that accumulated genetic load is partly responsible: One study suggests that 10 percent of cases are due to de novo variants.
Similarly, recent research has found that the number of genes expressed in the brain is compromised by de novo mutations in people with autism, and that older parents are more likely to have autistic children. It may be that autism is increasing more rapidly than the accumulation of genetic load because of the highly interconnected nature of the genes that affect the brain. It may be that the number of mutations above a certain threshold can cause the entire neuronal network to function abnormally, thus leading to autism and possibly other neurological conditions.
The average IQ of autistic individuals is around 70, which means that, in varying degree, half suffer from what is considered intellectual disability (ID). More than 3.5 million Americans have some form of autism spectrum disorder. The average cost of lifelong support for an autistic person with ID is reported to be $2.4 million, and $1.4 million for those with IQs over 70. The annual cost of autism in the US is reported to be $236-262 billion.
Genetic load could build up to the point that medicine cannot cope with the associated health compromises. This is especially likely for neurological conditions, such as autism, for which there is no known treatment. Likewise, the appearance of “superbugs” that have evolved immunity to all common antibiotics is a serious potential threat. If drug-resistant bacteria become common, our immune systems will have to combat these pathogens unaided, which was the rule before the discovery of antibiotics.
Accumulation of genetic load could have similar results. If medicine is unable to keep up with the rising genetic load, the number of people who die before reproductive age will start rising again. This would happen even with the medicine functioning at a very high level. In other words, purifying selection will resume so as to prevent further load accumulation.
If, in the future, there is a failure of the medical system or in the welfare policies that make medicine available to people who cannot afford it, there could be a devastating jump in the number of people of all ages who die.
In China and Russia in the 19th century, as many as half of all babies died before adolescence. Imagine genetic load accumulating to the point that death rates returned to that level (16 to 20 percent would be a theoretical minimum) despite modern medicine. Then imagine a societal collapse that eliminates modern medicine or sharply limits its availability.
This nightmare vision is not new. Nobel Prize winner Hermann J. Muller is his famous 1950 paper “Our Load of Mutations” argued that a steady accumulation of genetic load will lead to immense suffering for future generations. In his view, the only way to eliminate mutations was through “rationally directed guidance of reproduction.” He thought “abstention from reproduction” was far more desirable than the eventual alternative: “failure in a struggle for existence.”